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Abstract

We investigate theoretically and numerically the tunability of the magnetic property of
metamaterial in the THz region via thermal control. One component of the meta-atom is InSb,
playing an important role as an alterable metal. When the temperature of the InSb stack
increases from 300 to 350 K, the resonance peak of the transmission spectra shows a shift
from 0.6 to 0.85 THz accompanied by a stronger magnetic behavior. The S-parameter retrieval
method realizes the tunability of the negative permeability achieved in the above heating

range.
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1. Introduction

The study of artificially engineered materials, the so-called
metamaterials (MMs), has grown rapidly and extensively
since the first theoretical proposal by Veselago [1] and
the first experimental demonstration by Smith [2]. The
exotic abnormal properties of MMs have been employed
in various applications, such as perfect absorbers [3-5],
subwavelength imaging [6, 7], invisibility cloaking [8, 9]
and slow light [10-13]. The operation regime has also been
extended, from microwaves [4, 8] to the infrared [5, 9]
and to the visible [6, 14]. Recently, researchers have been
interested in how MMs can be dynamically and real-time
controlled. The conventional metamaterial (MM) structure
with determined geometrical parameters can operate only
at a fixed frequency, which limits its actual applicability.
In order to achieve tunable MMs, reconfigurable materials
must be incorporated such that the electromagnetic responses
can be controllable by various external means. So far,
there have been several approaches proposed. One of the
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early manipulation techniques was realized by Chen et al
[15]. The authors presented an active MM switch/modulator
through external voltage control. Subsequently, another
approach of tunability was confirmed using the electrical
reorientation phenomenon in liquid crystals [16, 17]. In
addition, semiconductor-integrated MMs were also proposed
as a promising candidate. The intrinsic properties of natural
semiconductors are flexibly and easily manipulated using
various means, including temperature, electricity and optics.
For instance, thermally or electrically tunable MMs were
demonstrated based on the control of the carrier density in
indium antimonide (InSb) [18, 19]. In addition, a thermally
induced insulator—metal phase transition in vanadium dioxide
(VO,) was also employed to develop active MMs [20, 21].
Some different approaches are also of great promise, such
as using the inter-subband transitions of semiconductors
in semiconductor quantum wells [22] or ferrite dielectric
materials [23].

The nature of negative permeability MMs can be
described by the equivalent circuit model. The coupling

© 2013 IOP Publishing Ltd Printed in the UK & the USA


http://dx.doi.org/10.1088/2040-8978/15/7/075101
mailto:thanhtung.nguyen@fys.kuleuven.be
mailto:lamvd@ims.vast.ac.vn
http://stacks.iop.org/JOpt/15/075101

J. Opt. 15 (2013) 075101

S T Bui et al

H

(b)

Ol

('t

(c)

Figure 1. A unit cell of the dish structure, (a) perspective view with the electromagnetic polarization, (b) (E, H) plane and (c) (k, E) plane.
Geometrical parameters are a = 62 um, r = 25 um, t; = 10 um, t, = 2 pum.

between a LC resonator and an applied field produces a
magnetic resonance. An enhancement of the diamagnetic
phenomenon, appearing on the right side of the resonance
frequency, yields a narrow negative permeability band. The
magnetic resonance frequency is calculated by w = \%,
where L is the effective inductance and C is the effective
capacitance. Hence, if one can control the value of either L or
C, the resonance is actively shifted. One idea is the integration
of a semiconductor into conventional MMs. According to
the Drude model, the carrier density in a semiconductor
depends solely on temperature. Consequently, the value of
either the effective inductance or capacitance can be thermally
manipulated. Based on the aforementioned argument, we
propose a thermally tunable magnetic MM, using InSb as a
mutable metal, in the THz region. Our design is a symmetric
and simple structure that makes the MM insensitive to
polarization, flexible and capable of scaling down.

2. Design and simulation

In the development of MMs, there have been two well-known
magnetic metamaterial elements, the split-ring resonator
(SRR) and the cut-wire pair (CWP) structure. However,
the CWP structure has advantages over the SRR structure.
Besides the simplicity of its geometry, planar CWP structures
for a normal incident wave allow us to provide a negative
permeability using only one layer. Therefore, based on the
CWP structure, with a slight modification, the dish-pair
(DP) structure was designed, as shown in figure 1. The
improvement of the proposed structure is a highly symmetric
geometry that makes the MM polarization-insensitive. The
arrangement of dish layers and the dielectric layer is
consistent with lithography fabrication techniques in the THz
region, including evaporation and patterning processes. The
DP MM consists of a periodic array of unit cells in the x
and y directions with a periodicity of a = 62 um. Figure 1
shows an illustration of a unit cell of the DP structure. Each
unit cell contains two identical dishes, symmetrically arranged

in a dielectric spacer. The thicknesses of the dielectric and
the metal are t;, = 10 um and #, = 2 wum, respectively.
The radius of the dish is r = 25 um. The whole MM
is placed in a reference medium, chosen as vacuum. The
numerical simulations are performed using the commercial
CST Microwave Studio. The propagation direction of incident
electromagnetic wave is parallel to the axis of the dish while
the (E, H) plane is normal, as shown in figure 1(a). The
dielectric spacer is Pyrex glass with a dielectric constant of
4.82 and a loss tangent of 0.0054. Pyrex glass is a useful
material in high-temperature applications. The dishes are
made of InSb semiconductor. In the far infrared region, the
permittivity of InSb can be determined according to the Drude
model [18, 24].

2
“p

E= 0™ 2 +iyw

where ¢4, is the high-frequency dielectric constant, w is the
angular frequency, y is the damping constant and w), is the
plasma frequency. The plasma frequency is defined as w, =
( E’ij* )%, in which N is the carrier density, e is the electronic
charge, €9 is the vacuum permittivity and m™ is the effective
mass of free carriers. In fact, the damping constant y of InSb
depends on the electron mobility u as y = % Therefore,
one might expect an influence of temperature on the damping
constant that can affect the absorption of InSb. However, in the
temperature range of interest between 300 and 350 K, within
a frequency region from 0.1 to 1.5 THz, the electron mobility
depends barely on temperature [25, 26]. For this reason, the
influence of temperature on the damping constant can be
neglected. The values of the parameters of InSb are eo, =
15.68, y =5 x 10' Hz, and m* = 1.37 x 10732 kg [18, 24].

3. Results and discussion

For InSb, the carrier density is determined by the formula
N =5.76 x 1014T% exp(%), where T is the absolute
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Figure 2. Calculated carrier density (red solid line) and plasma
frequency (blue dashed line) of InSb according to temperature.

temperature and kg is the Boltzmann constant [18, 24]. Hence,
we can calculate the dependence of the plasma frequency on
temperature. Figure 2 shows the calculated carrier density
and plasma frequency of InSb according to temperature. An
increase of temperature gives rise to an increased carrier
density and plasma frequency. Consequently, InSb shows
a more metallic feature, which plays an important role in
constructing our thermally tunable MM.

Substituting these calculated results into the Drude
model, we carried out the simulation at different temperatures.
The simulated transmissions are shown in figure 3(a). The
DP structure exhibits transmission dips in the spectra when
an external field is applied. The phenomenon is well known,
since the DP MM is a type of magnetic resonator. The
coupling of the meta-atom to the H field produces a magnetic
resonance leading to the narrow stop band. However, the
attractive result is the shift of the transmission from 0.6 to
0.85 THz when InSb is heated from 300 to 350 K. Obviously,
the magnetic behavior is tuned by controlling the temperature
of InSb. The blue shift of the magnetic resonance can be
explained using the equivalent LC model. The resonance
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frequency can be approximately described as w = L.

VLC

Besides the usual inductance, the kinetic inductance also
contributes to the total inductance of a conductor [27]. As
mentioned above, the carrier density increases on raising the
temperature. An enhancement of the carrier density reduces
the value of the kinetic inductance, as in the formula Lg =
o 1% , where m is the electron mass and « is a factor depending
on the geometry of the conductor. (In the case of our DP
conductor, the formula for a is a = % The formula is
calculated based on the method in [27].) Therefore, the
magnetic resonance should shift to higher frequencies, as
shown in the transmission spectra. The losses as a function
of the frequency at 300, 325 and 350 K are presented in
figure 3(b). The absorbance peak at these temperatures is
in the range from 0.4 to 0.5. The loss properties of the DP
structure are consistent with previous research on the CWP
structure [28]. Since the DP structure design originates from
the CWP structure, the magnitude of absorbance must be
similar in both structures.

In order to verify the existence of a negative permeability,
the standard retrieval method is performed [29]. Figure 4
shows the retrieved permeability according to temperature.
It is clearly seen that negative permeability is achieved in
a temperature range from 300 to 350 K. In addition, the
magnitude of the permeability is strengthened at the resonance
position when the temperature is raised. Owing to the stronger
magnetic behavior, the negative permeability band becomes
gradually wider.

The stronger magnetic behavior can be explained by the
enhancement of the carrier density. While the unit structure is
constant, the increase of the carrier density leads to a stronger
anti-parallel current. Consequently, the magnetic resonance
strength and the permeability are enhanced. In order to
verify this phenomenon, figure 5 presents the distribution
of the induced magnetic energy at the resonance frequency
for different temperatures: 300, 325 and 350 K. Obviously,
the induced magnetic energy increases when InSb is heated,
which confirms the strengthening of the magnetic behavior.

Figure 6 is the electric energy distribution at the
resonance frequency according to different temperatures. The
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Figure 3. Dependence of the simulated (a) transmission and (b) absorbance on temperature.
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Figure 4. Real part of the effective permeability according to
temperature.

electric energy mainly locates at the ends of the disk along the
E direction. The phenomenon is consistent with the magnetic
nature of the resonance. Owing to the strong coupling between
the MM and the magnetic component of the electromagnetic

f=0.60THz, T=300K

field, anti-parallel currents are generated on paired disks
along the E direction. Therefore, charges are accumulated
at the ends of the disk that lead to strong electric energy
there. The dependence of electric energy on temperature is
also presented in figure 6. The magnitude of electric energy
decreases when the temperature increases from 300 to 350 K.

4. Conclusions

We proposed a simple, thermally tunable magnetic metama-
terial using semiconducting InSb. The tunability in the far
infrared region of the negative permeability and the stronger
magnetic behavior were explained clearly by the enhancement
of the carrier density when InSb is heated from 300 to 350 K.
The design of the structure and the manipulation mechanism
are very simple, giving it the potential for applications.
Furthermore, with a diversified choice of semiconductors, our
approach might be useful not only in the far infrared but also
in the visible region.
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